
10 Iterative Methods for Linear Systems

10.1 Introduction

We have seen that a direct algorithm for solving

Ax = b

requires O(n3) work. This amount of work becomes inpractical quite quickly. The basic
aim of an iterative method is to produce a method of approximating the action of the
inverse of the matrix such that the amount of work required is better than O(n3).
To understand the general concept, let us write the matrix A as A = A − B + B with an
invertible matrix B at our disposal. Then, the equation Ax = b can be reformulated as
b = Ax = (A − B)x + Bx and hence as

x = B−1(B − A)x + B−1b =: Cx + c =: F (x),

so that x is a fixed point of the mapping F . To calculate this fixed point, we can use the
following simple iterative process. We first pick a starting point x0 and then form

xi+1 := F (xi), i = 1, 2, 3 . . . . (13)

If this sequence converges and if F is continuous, the limit has to be a fixed point of F .

10.2 Banach’s Fixed Point Theorem

We will now derive a general convergence result for the iteration process (13).

Definition 10.1 A mapping F : Rn → Rn is called a contraction mapping with respect to
a norm ‖ · ‖ on Rn if there is a constant 0 < q < 1 such that

‖F (x) − F (y)‖ ≤ q‖x − y‖

for all x,y ∈ Rn.

A contraction mapping is Lipschitz-continuous with Lipschtiz-constant q < 1.

Theorem 10.2 (Banach) If F : Rn → Rn is a contraction mapping then F has exactly
one fixed point x∗. The sequence xj+1 := F (xj) converges for every starting point x0 ∈ Rn.
Furthermore, we have the error estimates

‖x∗ − xj‖ ≤
q

1 − q
‖xj − xj−1‖ (a posteriori),

‖x∗ − xj‖ ≤
qj

1 − q
‖x1 − x0‖ (a priori).
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If we apply this theorem to our special iteration function F (x) = Cx + c, where C is the
iteration matrix, we see that

‖F (x) − F (y)‖ = ‖Cx + c − (Cy + c)‖ = ‖C(x − y)‖ ≤ ‖C‖‖x − y‖,

so that we have convergence if ‖C‖ < 1. Unfortunately, this depends on the chosen vector
and hence matrix norm, while, since all norms on Rn are equivalent, the fact that the
sequence converges does not depend on the norm.
In other words, having an induced matrix norm with ‖C‖ < 1 is sufficient for convergence
but not necessary. A sufficient and necessary condition can be stated using the spectral
radius of the iteration matrix.

Definition 10.3 Let A ∈ Rn×n with eigenvalues λ1, λ2, . . . , λn ordered so that |λ1| ≥
|λ2| ≥ · · · ≥ |λn|. The spectral radius of A is given by ρ(A) := |λ1|.

Note that, if λ is an eigenvalue of A with eigenvector x, then λr is an eigenvalue of Ar,
r = 1, 2, 3, . . . with eigenvector x. Hence, ρ(Ar) = ρ(A)r.

Theorem 10.4 (1) If ‖·‖ is a compatible matrix-norm then ρ(A) ≤ ‖A‖ for all matrices
A ∈ Rn×n.

(2) For any ε > 0 there is an induced norm, ‖ · ‖ such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε.

This allows us to state and prove our main convergence result for iterative processes.

Theorem 10.5 The iteration xj+1 = Cxj + c converges for every starting point if and
only if ρ(C) < 1.

Proof: Assume first that ρ(C) < 1. Then, we can pick an ε > 0 such that ρ(C)+ε < 1 and,
by Theorem 10.4, we can find an induced matrix norm ‖ · ‖ such that ‖C‖ ≤ ρ(C) + ε < 1,
which gives convergence.
Assume now that the iteration converges to x∗ for every starting point x0. If we pick the
starting point such that x = x0 − x∗ is an eigenvector of C with eigenvalue λ, then

xj − x∗ = F (xj−1) − F (x∗) = C(xj−1 − x∗) = . . . = Cj(x0 − x∗) = λj(x0 − x∗).

Since the expression on the left hand side tends to zero for j → ∞, so does the expression
on the right hand side. This, however, is only possible if |λ| < 1. Since λ was an arbitrary
eigenvalue of C, this shows that ρ(C) < 1. !
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10.3 The Jacobi and Gauss-Seidel Iterations

After this general discussion, we return to the question on how to pick the iteration matrix
C. Our initial approach yields

C = B−1(B − A) = I − B−1A,

with a matrix B, which should be sufficiently close to A but also easily invertible.
From now on, we will assume that the diagonal elements of A are all nonzero. This can be
achieved by exchanging rows and/or columns as long as A is nonsingular.
Next, we decompose A in its lower-left sub-diagonal part, its diagonal part and its upper-
right sup-diagonal part, i.e.

A = L + D + R.

The simplest possible approximation to A is then given by picking its diagonal part D for
B so that the iteration matrix becomes

CJ = I − B−1A = I − D−1(L + D + R) = −D−1(L + R),

with entries

cik =

{
−aik/aii, if i (= k,

0 else.
(14)

Hence, we can write the iteration

x(j+1) = −D−1(L + R)x(j) + D−1b

component-wise as

x(j+1)
i =

1

aii



bi −
n∑

k=1
k !=i

aikx
(j)
k



 , 1 ≤ i ≤ n, (15)

where, from now on, we will write the iteration index as an upper index.

Definition 10.6 The iteration defined by (15) is called Jacobi method.

Obviously, one can expect convergence of the Jacobi method if the original matrix A
resembles a diagonal matrix.

Definition 10.7 A matrix A is called strongly row diagonally dominant if

n∑

k=1
k !=i

|aik| < |aii|, 1 ≤ i ≤ n.
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Theorem 10.8 The Jacobi method converges for every starting point if the matrix A is
strongly row diagonally dominant.

Proof: We use the row sum norm to calculate the norm of the iteration matrix C:

‖C‖∞ = max
1≤i≤n

n∑

k=1

|cik| = max
1≤i≤n

n∑

k=1
k !=i

|aik|
|aii|

< 1.

Hence, we have convergence. !

A closer inspection of the method (15) shows that the computation of x(j+1)
i is independent

of any other x(j+1)
! . This means that, on a parallel or vector computer all components of

the new iteration x(j+1) can be computed simultaneously.
However, it also gives us the possibility to improve the process. For example, to calculate
x(j+1)

2 we could already employ the newly computed x(j+1)
1 . Then, for computing x(j+1)

3 we

could use x(j+1)
1 and x(j+1)

2 and so on.
This leads to the following iteration scheme.

Definition 10.9 The Gauss-Seidel method is given by the iteration scheme

x(j+1)
i =

1

aii

(

bi −
i−1∑

k=1

aikx
(j+1)
k −

n∑

k=i+1

aikx
(j)
k

)

, 1 ≤ i ≤ n. (16)

To analyse the convergence of this scheme, we have to find the iteration matrix C =
I − B−1A. To this end, we rewrite (16) as

aiix
(j+1)
i +

i−1∑

k=1

aikx
(j+1)
k = bi −

n∑

k=i+1

aikx
(j)
k ,

which translates into
(L + D)x(j+1) = −Rx(j) + b.

Thus, the iteration matrix of the Gauss-Seidel method is given by

CG = −(L + D)−1R.

Later on, we will prove a more general version of the following theorem.

Theorem 10.10 If A = AT is positive definite then the Gauss-Seidel method converges.
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10.4 Relaxation

A further improvement of both methods can be achieved by Relaxation.
We start by looking at the Jacobi method. Here, the iterations can be written as

x(j+1) = D−1b − D−1(L + R)x(j)

= x(j) + D−1b − D−1(L + R + D)x(j)

= x(j) + D−1(b − Ax(j)).

The latter equality shows that the new iteration x(j+1) is given by the old iteration x(j)

corrected by the D−1-multiple of the residual b − Ax. In practice, one often notice that
the correction term is off the correct correction term by a fixed factor. Hence, it makes
sense to introduce a relaxation parameter ω and to form the new iteration as

x(j+1) = x(j) + ωD−1(b − Ax(j)), (17)

which gives the following component-wise scheme:

Definition 10.11 The Jacobi Relaxation is given by

x(j+1)
i = x(j)

i +
ω

aii

(

bi −
n∑

k=1

aikx
(j)
k

)

, 1 ≤ i ≤ n.

Of course, the relaxation parameter should be chosen such that the convergence improves
compared to the original Jacobi method. The iteration matrix follows from

x(j+1) = x(j) + ωD−1b − ωD−1(L + D + R)x(j)

= [(1 − ω)I − ωD−1(L + R)]x(j) + ωD−1b

to be
CJ(ω) = [(1 − ω)I − ωD−1(L + R)] = (1 − ω)I + ωCJ ,

which shows that CJ(1) = CJ corresponds to the classical Jacobi method.

Theorem 10.12 Assume that CJ = −D−1(L + R) has only real eigenvalues λ1 ≤ λ2 ≤
. . . ≤ λn < 1 with corresponding eigenvectors z(1), . . . , z(n). Then, C(ω) has the same
eigenvectors z(1), . . . , z(n), but with eigenvalues µj = 1 − ω + ωλj for 1 ≤ j ≤ n. The
spectral radius of C(ω) is minimised by choosing

ω∗ =
2

2 − λ1 − λn
. (18)

In the case of λ1 (= −λn Relaxation converges faster then the Jacobi method.
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Figure 2: Determination of the relaxation parameter

Proof: For every eigenvector z(j) of CJ it follows that

C(ω)z(j) = (1 − ω)z(j) + ωλjz
(j) = (1 − ω + ωλj)z

(j),

i.e. z(j) is eigenvector of C(ω) for the eigenvalue 1− ω + ωλj =: µj(ω). Thus, the spectral
radius of C(ω) is given by

ρ(C(ω)) = max
1≤j≤n

|µj(ω)| = max
1≤j≤n

|1 − ω + ωλj|,

which should be minimised. For a fixed ω let us have a look at the function fω(λ) :=
1 − ω + ωλ, which is, as a function of λ, a straight line with fω(1) = 1.
For different choices of ω we have this way a collection of such lines (see Figure 2) and it
follows that the maximum in the definition of ρ(C(ω)) can only be attained for the indices
j = 1 and j = n. Moreover, it follows that ω is optimally chosen if fω(λ1) = −fω(λn) or

1 − ω + ωλ1 = −(1 − ω + ωλn).

This gives (18). Finally, we have the Jacobi method if and only if ω∗ = 1, which is
equivalent to λ1 = −λn. !

An alternative interpretation of the relaxation can be derived from

x(j+1) = (1 − ω)x(j) + ωCJx
(j) + ωD−1b

= (1 − ω)x(j) + ω(CJx
(j) + D−1b).

Hence, if we define z(j+1) = CJx(j) + D−1b, which is one step of the classical Jacobian
method, the next iteration of the Jacobi Relaxation method is

x(j+1) = (1 − ω)x(j) + ωz(j+1),

which is a linear interpolation between the old iteration and the new Jacobian iteration.
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This idea can be used to introduce relaxation for the Gauss-Seidel method as well. We
start by looking at Dx(j+1) = b − Lx(j+1) − Rx(j+1) and replace the iteration on the left
hand side by z(j+1) and then use linear interpolation again. Hence, we set

Dz(j+1) = b − Lx(j+1) − Rx(j+1),

x(j+1) = (1 − ω)x(j) + ωz(j+1).

Multiplying the second equation with D and inserting the first one yields

Dx(j+1) = (1 − ω)Dx(j) + ωb − ωLx(j+1) − ωRx(j)

and hence
(D + ωL)x(j+1) = [(1 − ω)D − ωR]x(j) + ωb.

Thus, the iteration matrix of the relaxed Gauss-Seidel method is given by

CG(ω) = (D + ωL)−1[(1 − ω)D − ωR].

We can rewrite this component-wise.

Definition 10.13 The Gauss-Seidel Relaxation or SOR (successive over-relaxation) method
is given by

x(j+1)
i = x(j)

i +
ω

aii

(

bi −
i−1∑

k=1

aikx
(j+1)
k −

n∑

k=i

aikx
(j)
k

)

, 1 ≤ i ≤ n.

Again, we have to deal with the question on how to choose the relaxation parameter.

Theorem 10.14 The spectral radius of the iteration matrix CG(ω) of SOR satisfies

ρ(CG(ω)) ≥ |ω − 1|.

Hence, convergence is only possible if ω ∈ (0, 2).

Proof: The iteration matrix CG(ω) can be written in the form

CG(ω) = (I + ωD−1L)−1[(1 − ω)I − ωD−1R].

The first matrix in this product is a normalised lower triangular matrix and the second
matrix is an upper triangular matrix with diagonal entries all equal to 1 − ω. Since the
determinant of a matrix equals the product of its eigenvalues, we have

|1 − ω|n = | det CG(ω)| ≤ ρ(CG(ω))n,

which gives the result. !

We will now show that for a positive definite matrix ω ∈ (0, 2) is also sufficient for conver-
gence. Since ω = 1 gives the classical Gauss-Seidel method, we also cover Theorem 10.10.
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Theorem 10.15 Let A ∈ Rn×n be symmetric and positive definite. Then, the SOR method
converges for every relaxation parameter ω ∈ (0, 2).

Proof: We have to show that ρ(CG(ω)) < 1. To this end, we rewrite the iteration matrix
CG(ω) in the form

CG(ω) = (D + ωL)−1[D + ωL − ω(L + D + R)]

= I − ω(D + ωL)−1A = I −
(

1

ω
D + L

)−1

A

= I − B−1A,

with B = 1
ωD + L. Let λ ∈ C be an eigenvalue of CG(ω) with corresponding eigenvector

x ∈ Cn, which we assume to be normalised by ‖x‖2 = 1. Then, we have CG(ω)x =
(I − B−1A)x = λx or Ax = (1 − λ)Bx. Since A is positive definite, we must have λ (= 1
such that we can conclude

1

1 − λ
=

xT Bx

xT Ax
.

Since A is symmetric, we can conclude that B + BT = ( 2
ω − 1)D + A, such that the real

part of 1/(1 − λ) satisfies

)
(

1

1 − λ

)
=

1

2

xT (B + BT )x

xT Ax
=

1

2

{(
2

ω
− 1

)
xT Dx

xT Ax
+ 1

}
>

1

2
,

because, on account of ω ∈ (0, 2), the expression 2/ω−1 is positive, as well as xT Dx/xT Ax.
The latter follows since the diagonal entries of a positive definite matrix have to be positive.
If we write λ = u + iv then we can conclude that

1

2
< )

(
1

1 − λ

)
=

1 − u

(1 − u)2 + v2

and hence |λ|2 = u2 + v2 < 1. !

Example 10.16 Suppose we wish to solve the system Ax = b where

A =





1 0 0.25 0.25
0 1 0 0.25

0.25 0 1 0
0.25 0.25 0 1



 , b =





0.25
0.5
0.75
1.0





Note that A is symmetric and diagonally dominant.
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Using Jacobi we have

x0 x1
J x2

J x3
J

0 0.25 −0.1875 −0.125
0 0.5 0.25 0.2969
0 0.75 0.6875 0.7969
0 1.0 0.8125 0.9844

‖AxJ − b‖2 1.3693 0.5413 0.2182 0.0882

Using Gauss-Seidel we have

x0 x1
G x2

G x3
G

0 0.25 −0.125 −0.1846
0 0.5 0.2969 0.2607
0 0.6875 0.7812 0.7961
0 0.8125 0.9570 0.9810

‖AxG − b‖2 1.3693 0.4265 0.0697 0.0114

Using SOR with ω = 1.05

x0 x1
S x2

S x3
S

0 0.2625 −0.1606 −0.1943
0 0.5250 0.2774 0.2546
0 0.7186 0.7937 0.7988
0 0.8433 0.9772 0.9853

‖AxS − b‖2 1.3693 0.4699 0.0394 0.0020
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