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Abstract—For a DC microgrid with constant power loads
(CPLs), the existence of a feasible power-flow solution, which
is usually difficult to analyze, is a necessary condition for the
correct operation of systems. In this paper, the solvability of
power-flow equation of DC microgrid with CPLs is analyzed,
where a majority of distributed generations (DGs) are under
MPPT control while other DGs are under droop control. At
first, this paper builds a power-flow mathematical model of
the DC microgrid. Secondly, three solvability conditions are
proposed with the first one being applied to ensure the power-
flow equation has a solution, while the other two applying to
ensure the solution within the given voltage deviation. The first
analytical condition (Theorem 2) is obtained by applying Brouwer
fixed-point theorem. Compared with the existing results, this
obtained sufficient condition is less conservative. Furthermore,
the other two sufficient solvability conditions (Theorem 3 and 4)
can guarantee the equilibrium not only exists, but also the voltage
deviation is within an acceptable range. Finally, case studies
verify the correctness of the proposed theorems. The obtained
conditions provide a guidance for establishing a dependable DC
microgrid.

Index Terms—DC microgrid, solvablity, constant power load,
MPPT, power-flow equation, Brouwer fixed-point theorem.

I. INTRODUCTION

Microgrids, which contain renewable generators, have been
regarded as essential and complemental role in the power
system. Microgrids are usually divided into two types: DC
and AC [1][2]. DC microgrids provide high transmission
efficiency, high reliability and flexibility [2]-[6] over their
AC counterparts. Hence, in recent decades, DC microgrids
are widely utilized in the application areas of aviation and
traffic to eliminate redundant power conversion losses, for
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instance, space crafts, aircrafts and electric vehicles [7]-[10].
In DC microgrids, to improve energy efficiency and achieve
maximum power output, the renewable energy DGs are usually
under MPPT control algorithm (MPPT-DGs). Meanwhile, the
traditional DGs are normally under droop control (Droop-
DGs), supporting the voltage of DC system.

Loads in DC microgrids are mainly connected to the DC
bus through DC-DC or DC-AC converters, letting the loads
to behave as constant power loads (CPLs) [7]-[9][11]. It is
well known that CPLs can easily cause the DC microgrids
unstable [10][12]. Most stability studies are based on small
signal stability analysis [8][9][13]-[22]. It is necessary to know
the equilibrium of the DC microgrid to establish an equivalent
linearized model around the equilibrium for stability analysis
[10][12]. In fact, the existence of an equilibrium is a prereq-
uisite for the stability of the DC microgrid. However, due to
the increasing of the CPLs, DC microgrids might lose the
equilibrium because of the transmission loss, resulting in the
voltage collapse [12][21][27]-[28]. Then, it is critical to find
methodologies that ensure the existence of the equilibrium.

DC microgrids can be divided into two types by the com-
plexity of power-flow equation, namely star-connection DC
microgrids (system with n DGs and one CPL) and meshed
DC microgrids (system with n DGs and m CPLs) [27]. The
power-flow equation of star-connection DC microgrids is a
quadratic equation with one unknown which solution can
be obtained by quadratic formula [7][9][29]. The power-flow
equation of meshed DC microgrids is complicated because it is
a multi-dimensional quadratic equation (MDQE) with multiple
unknowns [7][11][12][21].

Due to the existence of CPLs and MPPT-DGs, the power-
flow equation of DC microgrid is a nonlinear equation, which
makes the process of solving this equation difficult [23].
Therefore, in order to determine the feasible solution, many
methods have been used [24]-[26]. In [24], it formulates the
power-flow analyses for both AC and DC microgrid consid-
ering droop control and virtual impedance, which improved
the calculation accuracy. [25] proposes a linear approximation
method based on a Taylor series expansion to solve power-flow
equation of DC power grids, leading to an explicit solution
and avoiding the use of an iterative process. Newton-Raphson
method is used in [26] to solve power-flow bidirectionally
between the AC and DC subgrids. However, [24] and [26]
only consider Droop-DGs, the influence of MPPT-DGs are
not considered. In addition, the solvability of the power-flow
equation is the prerequisite for the use of these methods.
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Hence, this paper analyzes the solvability problem of the
power-flow equation.

There are three general approaches to the solvability of
the MDQE, that is, “quadratic form method” [12], “fixed-
point theorem method” [27]-[33] and “nested interval theorem
method” [11]. The sum-equation of all power-flow equations
is a quadratic form and its solvability can be determined
by completing the square. If the system has a equilibrium,
then the sum-equation is solvable. Based on this idea, a
necessary condition is obtained in [12]. To obtain sufficient
solvability conditions, several methods based on “fixed-point
theorem method” are proposed. These methods firstly aim
at transforming the MDQE into the equation taking form as
f(x) = x, where f is a constructive mapping [27][34]. Then if
f(x) is a “continuous self-mapping”, “concave self-mapping”
and “contraction self-mapping” respectively, according to three
fundamental theorems concerning fixed points of Brouwer
[31][33], Tarski [27] and Banach [28]-[29][32][35], there
exists a x∗ satisfies f(x∗) = x∗. Based on this method, several
conditions are proposed, and the sufficient conditions obtained
in [27] and in [28] can guarantee the uniqueness of the solution
while the condition obtained in [31] and [33] can not. The third
method “nested interval theorem method” has been applied
to analyze the power-flow solution of DC microgrids under
droop control in [11], they transform the solvability problem
of the MDQE into a convergence problem of two monotone
infinite sequences to get the sufficient condition. The existing
conditions mainly aim at DC microgrids with only Droop-
DGs. Only the condition obtained in [28] can be applicable
to DC microgrids with a few MPPT-DGs while the condition
is still conservative. Therefore, it is important to extend the
analysis regarding the existence of the feasible power-flow
solution of DC microgrids with a large amount of MPPT-DGs.

This paper aims to analyze the existence of the feasible
power-flow solution of the DC microgrid contains MPPT-
DGs, and propose a stronger existence condition. The main
contributions of this paper are summarized as follows.

1) In order to ensure the DC microgrid contain CPLs and
MPPT-DGs has a feasible power-flow solution, an analytical
solvability condition is derived based on Brouwer fixed-point
theorem. This condition is less conservative than existing
results.

2) Two solvability conditions are obtained not only to
guarantee the existence of the equilibrium, but also ensure
the feasible solution is within a given voltage deviation ε.

3) The derived feasible conditions that guarantee the
power-flow equation’s solvability can be illustrated in a two-
dimensional plane. If the system parameters are in the feasible
set, the system exists the equilibrium, providing a guidance for
establishing a dependable DC microgrid.

The rest of the paper is organized as follows. Section II
introduces preliminaries and notations. Section III presents
the power-flow equation of the DC microgrid considering
distributed Generations under MPPT Control. The main
results aimed to ensure the existence of the feasible power-
flow solution of the DC microgrid are obtained in section
IV. Section V presents the simulation results and proves the
correctness of the main results. Finally, in section VI, we

draw the conclusion.

II. PRELIMINARIES AND NOTATIONS

Notations. R,R+,Rm,Rm×n represent the set of the real
numbers, positive real numbers, real m-dimensional vector and
real m× n matrix, respectively. O represents the zero matrix
with proper dimension. Let M ∈ Rm×m be a symmetric
matrix, M is positive definite (denoted by M > 0) if and only
if xTMx > 0,∀x ∈ Rm and xTx 6= 0, where xT denotes the
transpose of x. Let A = [aij ], B = [bij ] ∈ Rm×n, A � B
denotes aij > bij . A is called positive if A � O. Define
‖A‖∞ = max

1≤i≤n

{∑n
j=1 |aij |

}
. Let x = [x1 x2 ... xm]

T

and xi 6= 0, we define x−1 =
[
x−11 x−12 ... x−1m

]T
and

[[x]] = diag {xi}. Meanwhile, 1m(0m) is defined as the m-
dimensional vector that all elements are 1(0). Let M =[
A B
C D

]
, A ∈ Rn×n, D ∈ Rm×m, if A is invertible, then

SA = D −CA−1B represents the Schur complement of M .
Definition 1. Let A ∈ Rm×m, when its off–diagonal ele-

ments are zero or negative, we call it a Z-matrix. Meanwhile,
it is also an M -matrix if and only if the the eigenvalues of A
are in the right half-plane [36] [37].

Lemma 1. If matrix A is an irreducible M -matrix, then
A−1 � O [38].

Lemma 2. Let M =

[
A B
C D

]
be an invertible matrix. If

A ∈ Rm×m, D ∈ Rn×n are all invertible, then the following
equation can be obtained [39]

M−1 =

[
F −A−1BE

−D−1CF E

]
where E = (D − CA−1B)−1, F = (A−BD−1C)−1.

Lemma 3. (Brouwer fixed-point theorem [40].) Given that
set D ⊂ Rn is compact and convex, and that f(x) : D → D
is a continuous function, then there exists some x ∈ D such
that f(x) = x; that is, x is a fixed point.

III. POWER-FLOW EQUATION OF DC-MICROGRIDS
CONSIDERING MPPT-DGS

In this article, we consider a DC microgrid power distri-
bution system with h Droop-DGs, m MPPT-DGs, n CPLs
which is shown in Fig.1. This system is composed by three
main parts, that is, power sources, loads and cables. In the case
of low voltage system, the cable is purely resistive, and the
loads are assumed to be CPLs. According to graph theory, the
equivalent structure of the system is equivalent to the graph
shown in Fig.1.b, where loads and sources are considered as
nodes, and cables are considered as edges. Furthermore, we
assume that the equivalent graph of the system and the sub-
graph induced by the load nodes are strongly connected.

Applying the Ohm’s and Kirchoff’s laws, the current in-
jected into the transmission network by each node can be
described as follows iSiM

iL

 =

YSS YSM YSL

YMS YMM YML

YLS YLM YLL

uSuM
uL

 = Y

uSuM
uL

 (1)
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Fig. 1. A DC microgrid power distribution system with h converters (DGs),
m MPPTs, n CPLs. In (a), the black blocks represent the cable resistance and
the DGs, MPPTs and CPLs are the red, yellow and blue blocks, respectively.
In (b), it is an equivalent graph of (a), the red, blue and yellow points figure
the DGs, CPLs and MPPTs, respectively. In (c), the control diagram is shown.

where Y ∈ R(h+m+n)×(h+m+n) is the symmetric admittance
matrix of the system, and iS ∈ Rh, iM ∈ Rm and iL ∈ Rn

are the current vectors of Droop-DGs, MPPT-DGs and CPLs
injecting to the network, respectively. uS ∈ Rh, uM ∈ Rm

and uL ∈ Rn represent the voltage vectors of Droop-DGs,
MPPT-DGs and CPLs respectively.

For MPPT-DGs and CPLs, the power-balance equations are
given by [

[[uM ]] O
O [[uL]]

] [
iM
iL

]
=

[
PM

−PL

]
(2)

where PM ∈ Rm represents the output power vector of MPPT-
DGs and PL ∈ Rm is the consumed power vector of CPLs.
The powers injected into the network by MPPT-DGs and
CPLs are positive and negative respectively, since CPL’s actual
current direction and reference are opposite.

When the system is in a steady state, the output voltage of
the sources can be described as

uS = uref1h −KiS (3)

where K = diag {ki}, uref ∈ R+ is the voltage reference
and ki represents the droop gain of the i-th DG. Since K is
a positive definite diagonal matrix, therefore K is invertible.

Substituting (3) into (1), we have

uS = SkK
−1uref1h − Sk

[
YSM YSL

] [uM
uL

]
(4)

where Sk = (YSS +K−1)−1. Then, substituting (4) into (1),
it yields [

iM
iL

]
=

[
YMS

YLS

]
SkK

−1uref1h

−
[
YMS

YLS

]
Sk

[
YSM YSL

] [uM
uL

]
+

[
YMM YML

YLM YLL

] [
uM
uL

]
=

[
YMS

YLS

]
SkK

−1uref1h + Yeq

[
uM
uL

]
(5)

Define Yeq as

Yeq =

[
YMM YML

YLM YLL

]
−
[
YMS

YLS

]
Sk

[
YSM YSL

]
(6)

It is noted that Yeq is the Schur complement of block YSS +
K−1 of matrix T where

T =

YSS +K−1 YSM YSL

YMS YMM YML

YLS YLM YLL

 (7)

Substituting (5) into (2), the power-flow equation is obtained
as follows[

[[uM ]]
[[uL]]

]([
YMS

YLS

]
SkK

−1uref1h + Yeq

[
uM
uL

])
=

[
PM

−PL

] (8)

Clearly, the power-flow equation (8) is a MDQE.

Multiplied by Y −1eq

[
[[uM ]]

[[uL]]

]−1
, (8) becomes

[
uM
uL

]
= −Y −1eq

[
YMS

YLS

]
SkK

−1uref1h

− Y −1eq

[
−[[PM ]]

[[PL]]

] [
uM
uL

]−1 (9)

Definition 2. A nonlinear equation is solvable if this equation
has a positive real solution.
Remark 1. (9) is the power-flow equation of the system. It is
noted that, if and only if, the nonlinear equation (9) is solvable
with given values of K,uref , P and Y , then the whole system
has an equilibrium. To derive the solvability condition for (9),
we firstly investigate the properties for Yeq .

Theorem 1: For a strongly connected DC microgrid, the
following two statements hold.

(1) Y −1eq is a positive matrix, that is Y −1eq � O.

(2) −Y −1eq

[
YMS

YLS

]
SkK

−1uref1h = uref1m+n.

Proof. Firstly, for the statement (1) in Theorem 1, since the DC
microgrid is strongly connected, Y is an irreducible positive
semi-definite Z-matrix with only one zero eigenvalue [27].

According to (7), T is an irreducible symmetric Z-matrix,
as well as Y . For any non-zero x ∈ Rh+m+n, we obtain

xTTx =

{
> 0, ∀x ∈ span {1h+m+n}
≥ xTY x > 0,∀x ∈ Rh+m+n − span {1h+m+n}

Hence, T is a positive definite matrix. Since T is a positive
definite Z-matrix, according to Definition 1, T is also an
irreducible M -matrix. Then, according to Lemma 1, T−1 is a
positive matrix.

By invoking Lemma 2, since Yeq is a Schur complement of
T , T−1 is given by

T−1 =

[
∗ ∗
∗ Y −1eq

]
(10)

Since T−1 is a positive matrix, that is, all elements of
this matrix are larger than zero, then Y −1eq is positive and
irreducible. Thus the statement (1) is proved.

Since Y is a Laplacian matrix, Y 1n+m = 0n+m, i.e.,
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 YSS1h + YSM1m + YSL1n = 0h
YMS1h + YMM1m + YML1n = 0m
YLS1h + YLM1m + YLL1n = 0n

(11)

To prove the statement (2), we firstly calculate its variant
as follows

uref1m+n + Y −1eq

[
YMS

YLS

]
SkK

−1uref1h

= urefY
−1
eq

(
Yeq1m+n +

[
YMS

YLS

]
SkK

−11h

)
= urefY

−1
eq

(
Yeq1m+n +

([
YMS

YLS

]
−
[
YMS

YLS

]
SkYSS

)
1h

)
(12)

Notice that Yeq is the Schur complement of T , the following
is obtained

Yeq1m+n +

([
YMS

YLS

]
−
[
YMS

YLS

]
SkYSS

)
1h

=

([
YMM YML

YLM YLL

]
−
[
YMS

YLS

]
Sk

[
YSM YSL

])
1m+n

+

([
YMS

YLS

]
−
[
YMS

YLS

]
SkYSS

)
1h

=

([
YMM YML

YLM YLL

]
1m+n +

[
YMS

YLS

]
1h

)
−
[
YMS

YLS

]
Sk

([
YSM YSL

]
1m+n + YSS1h

)
=

[
YMM1m + YML1n + YMS1h
YLM1m + YLL1n + YLS1h

]
−
[
YMS

YLS

]
Sk (YSM1m + YSL1n + YSS1h)

(13)

Substituting (11) to (13), we get

Yeq1m+n +

[
YMS

YLS

]
SkK

−1uref1h = 0m+n,

i.e.,

−Y −1eq

[
YMS

YLS

]
SkK

−1uref1h = uref1m+n (14)

Thus, the statement (2) is proved, and the proof is com-
pleted.

According to Theorem 1, (8) becomes

f (u) = 1m+n − Ju−1 = u (15)

where u = u−2ref

[
uM
uL

]
, J = u−2refA,A = Y −1eq P, P =[

−[[PM ]]
[[PL]

]
.

The system has a feasible power-flow solution if and only
if, for given A and uref , the nonlinear equation (15) admits
a real solution. Next, we will derive the solvability conditions
for (15).

IV. EXISTENCE CONDITIONS OF POWER-FLOW SOLUTION
FOR THE DC MICROGRID

A. The Existing Related Results

The existing results concerning the DC microgrid under
droop control, whose power-flow equation is

[[uL]]BequL + [[uL]]σ + PL = 0n (16)

where Beq = BLL − BLG

(
BGG +K−1

)−1
BGL, σ =

−BLG (I +KBGG)
−1
V , and BLL, BLG, BGG, BGL are

blocks of the admittance matrix B of system contains no
MPPT-DGs. Beq is a positive definite matrix, PL is a positive
vector and σ ∈ Rh (more details are in [11]).

To analyze the existence of the feasible power-flow solu-
tion of the DC microgrid, there are mainly three methods:
“quadratic form method” [12], “fixed-point theorem method”
[27]-[33], and “nested interval theorem method” [11].

The main procedure of the first method is to transfer
the n-dimensional quadratic equation into a one-dimensional
quadratic equation. If the sum-equation of all power-flow
equations is not solvable, then (16) has no solution. Hence,
a necessary solvability condition of (16) is that there is no
diagonal matrix W making (17) holds [12].{

WBeq +BT
eqW > 0

2× 1TnWPL − σTW (WBeq +BT
eqW )−1Wσ > 0

(17)

where W = diag {w1, w2, ..., wn} is the weighted sum matrix.
The first method can only obtain the necessary condition.

Therefore, to obtain the sufficient solvability conditions, sev-
eral methods based on fixed-point theorem are proposed.

The core procedure of fixed-point-theorem-based method is
to change the MDQE’s solvability problem into the problem
of existence of the fixed-point of a mapping. Firstly, they
transform (16) into (18).

x = f(x) = 1n − Jx−1 (18)

where x = [[uref1n]]−1uL, J = u−2refB
−1
eq [[PL]].

If there exists a convex closed set D such that f(x) ∈ D and
‖∂f/∂x‖ < 1 for any x ∈ D, according to Banach’s fixed-
point theorem, there is a unique solution x∗ ∈ D such that
x∗ = f(x∗). Then, based on this idea, a sufficient solvability
condition is obtained as follows [28]

4 ‖J‖∞ < 1 (19)

However, the sufficient condition (19) based on Banach’s
fixed-point theorem needs to satisfy the strict condition of
‖∂f/∂x‖ < 1, hence the existence condition obtained in (19)
is conservative.

Since f(x) is a concave increasing function, based on
Tarski fixed-point theorem, [27] gets the sufficient condition
as follows

uref > min

{
2
√∥∥B−1eq [[PL]]

∥∥
∞,

η̄ + η√
η̄η

}
(20)

where η and χ represent the Perron eigenvector and eigenvalue
of B−1eq [[PL]], η = min {ηi} , η̄ = max {ηi}. It is noted that
condition (20) is less conservative than (19).
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For the third method, since f(x) is an increasing function,
if there is a positive vector γ satisfies [11]

γ ≺ f(γ) (21)

then, the following is derived

γ ≺ f(γ) ≺ f(f(γ)) ≺ f(1n) ≺ 1n (22)

Likewise, the following is obtained

a1 ≺ a2 ≺ . . . ≺ an ≺ · · · ≺ bn ≺ · · · ≺ b2 ≺ b1 (23)

where sequences an+1 = f(an), bn+1 = f(bn), and a1 = x,
b1 = 1m. The sequences an and bn consist of the nested
intervals [an, bn]. According to the nested interval theorem,
there is a unique vector that satisfies f(γ∗) = γ∗, and γ ≺
γ∗ ≺ 1n, if (21) holds, i.e., the system has a feasible power-
flow solution. It is worth mentioning that the condition (20)
can also be derived from (21) (more details are in [11]).

B. Motivation

The solvability sufficient conditions obtained in [12] and
[27] can guarantee the existence of the feasible power-flow
solution of the DC microgrid under droop control. However,
in the DC microgrid considering MPPT-DGs, since A in (15)
is not a positive matrix, f(x) will not be a monotonic function.
Thus, the Tarski’s fixed-point theorem and the nested interval
theorem can not be applied in the DC microgrid with MPPT-
DGs.

In this paper, we analyze the existence of power-flow
solution of the DC microgrid considering MPPT-DGs. In
particular, the following two questions will be addressed.
Q1. How to ensure that the DC system has a feasible power-
flow solution?
Q2. For a given voltage deviation ε, how to ensure that the
power-flow equation (15) has a feasible solution such that
uref (1− ε)1m+n ≤ u ≤ uref (1 + ε)1m+n?

C. Sufficient Condition for Existence of Equilibrium

The main results of this paper are as follows.
Define A =

[
−A1 A2

]
, A1 ∈ R(m+n)×m, A2 ∈ R(m+n)

×n. Define J1 = u−2refA1, J2 = u−2refA2. Then, J =[
−J1 J2

]
.

Theorem 2: If (24) holds, the equation (15) admits
a solution in the convex closed set E as E ={
x|(1−

√
1−‖J‖∞

3 )1m+n ≤ x ≤ (1 +

√
1−‖J‖∞

3 )1m+n

}
.

1− ‖J‖∞ − 3(
‖J1m+n‖∞

2
)

2
3 ≥ 0 (24)

Proof. If f(x) is a continuous self-mapping in E, according
to Lemma 3, there is a vector x∗ ∈ E such that f(x∗) = x∗.
Therefore, we will prove that f(x) is a self-mapping in E if
(24) holds.

Define t =

√
1−‖J‖∞

3 , then 3t2 = 1 − ‖J‖∞ is obtained.
And according to (24), it yields

2t3 − ‖J1m+n‖∞ ≥ 0 (25)

J1 and J2 are both positive matrices. The range of f(x)
yields for any x ∈ E

f(x) < 1m+n +
J11m
1− t

− J21n
1 + t

f(x) > 1m+n +
J11m
1 + t

− J21n
1− t

(26)

Therefore, f(x) is a self-mapping if the following inequal-
ities hold.

1m+n +
J11m
1− t

− J21n
1 + t

≤ (1 + t)1m+n

1m+n +
J11m
1 + t

− J21n
1− t

≥ (1− t)1m+n

(27)

For the first inequality in (27), considering that

1m+n +
J11m
1− t

− J21n
1 + t

− (1 + t)1m+n

= − 1

1− t2
(t(1− t2)1m+n − (1 + t)J11m

+ (1− t)J21n)

= − 1

1− t2
(t(1− t2)1m+n + J21n − J11m

− (J11m + J21n)t)

(28)

Since J1 and J2 are all positive matrices, we have{
|J11m − J21n| = |J1m+n| < ‖J1m+n‖∞
|J11m + J21n| < ‖J11m + J21n‖∞ = ‖J‖∞

(29)

According to (25) and (29), the following is obtained

t(1− t2)1m+n + J21n − J11m

− (J11m + J21n)t

≥ (t(1− t2)− ‖J1m+n‖∞ − ‖J‖∞ t)1m+n

= (t(1− t2 − ‖J‖∞)− ‖J1m+n‖∞)1m+n

= (
2

3
t(1− ‖J‖∞)− ‖J1m+n‖∞)1m+n

= (2t3 − ‖J1m+n‖∞)1m+n

≥ 0m+n

(30)

The result in (30) shows that the first inequality of (27)
holds. For the second inequality in (27), considering that

1m+n +
J11m
1 + t

− J21n
1− t

− (1− t)1m+n

=
1

1− t2
(t(1− t2))1m+n

+ (1− t)J11m − (1 + t)J21n)

=
1

1− t2
(t(1− t2))1m+n + J11m

− J21n − (J11m + J21n)t)

(31)

According to the results in (25) and (29), it yields

t(1− t2))1m+n + J11m − J21n − (J11m + J21n)t

≥ (t(1− t2)− ‖J1m+n‖∞ − ‖J‖∞ t)1m+n

= (t(1− t2 − ‖J‖∞)− ‖J1m+n‖∞)1m+n

= (2t3 − ‖J1m+n‖∞)1m+n ≥ 0m+n

(32)

Then, (30) and (32) indicate that f(x) is a self-mapping in
E if (24) holds. The proof is completed.
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Remark 2: Theorem 2 provides an analytical solvability
condition for the existence of feasible power-flow solution of
the DC microgrid considering MPPT-DGs. Thus, (24) answers
Q1.

D. Comparing with the Existing Result in [28]

In this section, the proposed analytical solvability condition
(24) is compared with condition (7) in [28].

The condition (7) in [28] is a solvability condition obtained
based on Banach’s fixed point theorem, which is given in (19)
in this paper.

Define p = J11m, q = J21n, and pi ∈ R+ , qi ∈ R+

represent i-th element of p and the i-th element of q,
respectively.

Since J =
[
−J1 J2

]
, and according to (29), condition

(19) and (24) are rewritten into (33)-(34).

4|J11m + J21n| < 1 (33)

|J11m + J21n|+ 3(
|J11m − J21n|

2
)

2
3 < 1 (34)

Furthermore, (33)-(34) change into (35)-(36)

4(pi + qi) < 1 (35)

(pi + qi) + 3(
|pi − qi|

2
)

2
3 < 1 (36)

The comparison between condition (24) and (19) is illus-
trated in a two-dimensional plane(as shown in Fig.2). Clearly,
condition (24) derived in this paper is less conservative than
condition (19).

0.25

0.25

0.5

q

p
0

0

0.5

Condition(24)

Condition(19)

4 1J



2

3
1

3( ) 1
2

m nJ
J

 


 

Fig. 2. The comparison of condition (24) and the condition in [28]

E. Solvability Conditions Considering Voltage Deviation

In section C, condition (24) is obtained, however, it may
not guarantee that the equation (15) admits a solution for a
given voltage deviation ε. Therefore, we will investigate Q2.
The main results are as follows.

Define Dε = {x|(1− ε)1m+n ≤ x ≤ (1 + ε)1m+n}, and
ε ∈ (0, 1). Then Eε ∈ R2 is defined as the feasible region of
the following inequalities.

x

1− ε
− y

1 + ε
≤ ε

x

1 + ε
− y

1− ε
≥ −ε

x, y > 0

(37)

Theorem 3: For a given voltage deviation ε ∈ (0, 1), if (38)
holds, (15) admits a solution in Dε.

(pi, qi) ∈ Eε, i ∈ {1, · · · ,m+ n} (38)

Proof. It is obvious that f(x) is a self-mapping in Dε if (38)
holds. Therefore, according to Lemma 3, there exists x ∈ D
such that f(x) = x, i.e., (15) has a solution in Dε. Thus, the
proof is completed.

E
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Fig. 3. The feasible region obtained by Theorem 4.

Remark 3: According to Theorem 3, for any ε ∈ (0, 1), there
exists a Eε (Eε is shown as blue shadow in Fig.3.(a)) such
that if (pi, qi) ∈ Eε, (15) has a solution in Dε. Let ε∗ < ε,
there must exist a Eε∗ such that (15) has a solution in Dε∗

when (pi, qi) ∈ Eε∗ . In other words, Eε∗ is another feasible
condition for (15), therefore Eε ∪ Eε∗ (shown in Fig 3.(b))
is the feasible condition of (15). Based on this idea, a less
conservative condition is obtained as follows.

Define Fε = lim
n→∞

.
n⋃

i=1

E( iε
n )

Theorem 4: For a given voltage deviation ε ∈ (0, 1), if (39)
holds, then (15) has a feasible solution in Dε, i.e., the system
has a feasible power-flow solution.

(pi, qi) ∈ Fε (39)

Remark 4: The approximate image of Fε is presented in Fig.4.
As shown in Fig.4, the black straight lines and red curves
together form the envelope line of Fε.
Remark 5: Theorem 3 and Theorem 4 are the solutions of Q2.
In this paper, in order to solve Q1 and Q2, we describe the pro-
cess of regulating voltage reference. As mentioned in Section
C, Theorem 2 provides a feasible condition for the existence of
power-flow solution of the DC microgrid considering MPPT-
DGs, however, this obtained voltage reference uref can not
meet the requirement of a given voltage deviation ε. Therefore,
we propose Theorem 3 and Theorem 4 to ensure that the
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Fig. 4. The feasible region obtained by Theorem 4.

system’s power-flow equation (15) has a feasible solution u
such that uref (1 − ε)1m+n ≤ u ≤ uref (1 + ε)1m+n with a
given ε.

The flow chart, shown in Fig.5 below, summarizes the
overall process of regulating voltage reference. The detailed
process is discussed in part B of Section V.
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Fig. 5. The flow chart of the solution for Q1 and Q2.

Remark 6: In DC microgrids, the existence of a stable
steady-state behavior, which is usually difficult to analyze, is
crucial for the correct operation of DC distribution. This paper
provides analytical existence conditions as a function of the
system parameters (i.e., uref , Y,K, PM and PL), which pro-
vides a design guideline for planning a reliable DC microgrid.

F. Advantages of the Proposed Conditions Comparative Anal-
ysis with the Exiting Methods

In our work, we analyze the existence condition for the
feasible power-flow solution of DC microgrid with MPPT-
DGs.The advantages of the proposed approaches are high-
lighted as follows by making comparative analysis with ex-
isting methods.

1. The existence of a feasible power-flow solution is a
prerequisite for the correct operation of power systems. For
this problem, many existing literature such as [11][27], [28]
and [31] only consider the Droop-DGs but ignore the influence
of renewable generations (MPPT-DGs). In this paper, the
existence conditions of the solution of the power-flow equation
for the DC microgrid, which considers both Droop-DGs and
MPPTDGs, are derived. Moreover, the feasible region of the
proposed solvability condition is wider than some existing
results in [28] and [35] (4 ‖J‖∞ < 1).

2. For the power-flow analysis of DC microgrid, several
methods such as Newton-Raphson method in [26] and ap-
proach without iterative method in [25] have been proposed
to calculate the accurate solution of power-flow equation.
However, only when the equilibrium of the system exits can
these methods work, i.e., the DC power grid is operating under
steady state conditions. In our work, we derive the solvability
conditions (Theorem 2-4) to guarantee the existence of the
equilibrium, which is a fundamental condition for power-flow
analysis. Furthermore, the proposed analytical condition (24)
is less conservative than (7) in [28]. This means that the
proposed condition is stronger than existing result.

3. In addition, from a brand new perspective, we propose
feasible conditions considering the voltage deviation (Theorem
3 and 4), which can be presented in a two-dimensional
plane. This provides an intuitive guide for selecting system
parameters that can guarantee the existence of equilibrium of
DC microgrid.

V. CASE STUDY

In this section, the correctness of theorems proposed in
Section IV are verified. In order to verify the above analysis,
we simulate a DC microgrid power distribution system with 20
Droop-DGs, 30 CPLs and 20 MPPT-DGs as shown in Fig.6. In
Fig.6, red, blue and yellow points are Droop-DGs, CPLs and
MPPT-DGs, respectively. Black lines represent the cables, and
green numbers in this figure show resistance values (resistance
values are given in Ω).

Simulations are performed using and MATLAB/Simulink.
In simulations, the Droop-DGs are modeled as controlled
voltage source based on (3). MPPT-DGs and CPLs are both
modeled as controlled current sources based on equation (2).

Take the droop gain coefficients k1 = 1.5, k2 = · · · =
k20 = 2.

A. Comparison of Derived Condition and Condition in [24]

In this section, one case is designed to make sure that
Theorem 2 is correct. Besides, a comparison is made to verify
condition (24) is less conservative than (19).
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Fig. 6. A DC microgrid power distribution system with 20 converters (DGs),
20 MPPTs, 30 CPLs.

Let

τ1 = ‖J‖∞ + 3(
‖J1m+n‖∞

2
)

2
3

τ2 = 4 ‖J‖∞ .
(40)

According to condition (19) and (24), the system has a
feasible solution if τ1 < 1, τ2 < 1. One case is designed
to verify the correctness of Theorem 2.

Case 1: PM,max is given as

PM,max = [100× 1T10, 150× 1T5 , 200× 1T5 , ]
TkW. (41)

The power of MPPT-DGs are time-varying and partly random
as shown in Fig.7.(a), and PM (t) ≤ PM,max. The power of
CPLs are as follows

t < 0.2
PL = [100× 1T10, 150× 1T10, 200× 1T10, ]

TkW,
0.2 ≤ t < 0.4
PL = [180× 1T10, 230× 1T10, 280× 1T10, ]

TkW.

(42)

In order to compare these two conditions, we take urefi
that can ensure τ1 = τ2 = 0.999. According to (40), we can
quote the equations used to derive urefi values as follows

uref1 ≥

√
‖A‖∞
τ1

+ 3(κ1 + κ2)

uref2 ≥ 2

√
‖A‖∞
τ2

.

(43)

where

κ1 = 3

 3

√
‖A‖∞

2τ1
+ κ3

2

3

√
‖A‖∞

2τ1
− κ3,

κ2 = 3

 3

√
‖A‖∞

2τ1
− κ3

2

3

√
‖A‖∞

2τ1
+ κ3,

κ3 =

√
‖A‖∞

2
τ1 − ‖A1m+n‖∞

2

4τ31
.

The proof of (43) is shown in Appendix, Proof of (43).
Therefore, by applying these conditions, we have

uref1 = 2505V,

uref2 = 3640.3V.
(44)
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Fig. 7. (a) Output Power of MPPT-DGs. (b) The load Voltages for Case 1.

It is obvious, condition (24) is less conservative than condi-
tion (19). Take uref = 2505V , then condition (24) is satisfies
while condition (19) is not.

The output voltages of CPLs in case 1 are shown in
Fig.7.(b). As shown in Fig.7, when uref = 2505V , the
system’s equilibrium exists although the powers of renewable
generators are time-varying. Therefore, the relevant result
verifies the correctness of Theorem 2. Furthermore, for Q1,
Theorem 2 is a less conservative condition than the existing
result.

B. The Answer to Q2

In this section, one case is designed to make sure that
Theorem 3 and Theorem 4 are correct.

The power values of MPPT-DGs are still time-varying and
partly random. Assuming that the voltage deviation ε is 0.2.
Next, we use case 2 to explain how to use Theorem 3
to regulate the minimum reference voltage of Droop-DGs,
which can guarantee that the system has a feasible power-flow
solution for a given voltage deviation. Besides, the comparison
of Theorem 3 and Theorem 4 is also clarified in this case.

According to Theorem 3 and Lemma 3, it is obvious that
the system admits a solution in the convex closed set E if
condition (38) holds.

Case 2: The power values of MPPT-DGs are same as case
1, i.e., PM (t) ≤ PM,max. The setting values of CPLs change
with time as follows

t < 0.2
PL = [100× 1T10, 150× 1T10, 200× 1T10, ]

TkW,
0.2 ≤ t < 0.4
PL = [180× 1T10, 230× 1T10, 280× 1T10, ]

TkW,
t > 0.6
PL = [260× 1T10, 310× 1T10, 360× 1T10, ]

TkW.

(45)

Next, Theorem 3 and Theorem 4 are both applied to design
the reference voltage for case 2 according to Fig.5.
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Define uref,B represents the minimum value of reference
voltage obtained by condition (38), and uref,C represents the
minimum value of reference voltage obtained by condition
(39).

By using Theorem 3, uref,B is obtained by applying con-
dition (38), it yields

uref,B = 2240.5V. (46)

By using Theorem 4, since ε = 0.2, by using condition
(39), uref,C is calculated as

uref,C = 2238V. (47)

Obviously, condition (39) is less conservative than condition
(38).

Take uref = 2238V for case 2. In order to verify the
correctness of Theorem 3 and 4, the load voltages of CPLs
need to meet the following range

uref (1− ε)1m+n ≤ uL ≤ uref (1 + ε)1m+n. (48)

In this case,

1790.4V ≤ uL ≤ 2685.6V. (49)

Time(s)
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Fig. 8. The load voltages for Case 2.

The results in Fig.8 present that if condition (39) holds, the
system remain stable within a given voltage deviation. Thus
Theorem 4 is proved.

VI. CONCLUSION

The existence of the feasible power-flow solution of the
DC microgrid considering distributed generations under
MPPT Control is analyzed in this paper. At first, an
analytical sufficient condition is derived, this condition is less
conservative than a existing condition. Next, two sufficient
solvability conditions are proposed, which can ensure the
existence of the equlibrium within an acceptable voltage
deviation. The obtained conditions provide a reference for
the establishment of a reliable DC microgrid, whether or not
there is a given voltage deviation.

VII. APPENDIX

A. Proof of (43)

Since A = Y −1eq

[
[[PL]]

−[[PM ]]

]
and J = u−2refA. Then

changing (40) into the following form

τ1 = u−2ref ‖A‖∞ + 3(
‖A1m+n‖∞

2
)

2
3u
− 4

3

ref . (50)

τ2 = 4u−2ref ‖A‖∞ . (51)

For (50), we can change it into a cubic equation with one
unknown as follows(

u
2
3

ref

)3
− 3

τ1
(
‖A1m+n‖∞

2
)

2
3

u
2
3

ref −
‖A‖∞
τ1

= 0 (52)

Applying Cardano formula to solve equation (52), we have

3

√
u2ref= 3

√
‖A‖∞

2τ1
+ κ3 + 3

√
‖A‖∞

2τ1
− κ3 (53)

where

κ3 =

√
‖A‖∞

2
τ1 − ‖A1m+n‖∞

2

4τ31

Therefore, we obtain

uref =

√
‖A‖∞
τ1

+ 3(κ1 + κ2) (54)

where

κ1 = 3

 3

√
‖A‖∞

2τ1
+ κ3

2

3

√
‖A‖∞

2τ1
− κ3,

κ2 = 3

 3

√
‖A‖∞

2τ1
− κ3

2

3

√
‖A‖∞

2τ1
+ κ3.

Since we need to ensure that τ1 < 1, then we can derive
uref1 as follows

uref1 ≥

√
‖A‖∞
τ1

+ 3(κ1 + κ2)

Hence, the first inequality of (43) is proved.
For (51), we can change it into a quadratic equation with

one unknown as follows

u2ref −
4 ‖A‖∞
τ2

= 0 (55)

Then, calculating equality (55), we obtain

uref = 2

√
‖A‖∞
τ2

(56)

Since we need to ensure that τ2 < 1, then we can derive
uref2 as follows

uref1 ≥ 2

√
‖A‖∞
τ2

Therefore, the second inequality of (43) is proved. Hence, the
proof is completed.
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