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Wind Direction Prediction for Yaw Control of Wind Turbines
Dongran Song, Jian Yang*, Yao Liu, Mei Su, Anfeng Liu, and Young Hoon Joo*

Abstract: Depending on historical signals from wind direction sensors, conventional yaw control methods provide
general performance and may be optimized by taking advantage of wind direction prediction. This paper presents
two wind direction prediction methods based on time series models. The first method adopts a univariate ARIMA
(auto-regressive integrated moving average) model, while the second one uses a hybrid model that integrates the
ARIMA model into a Kalman Filter (KF). Since the predicted results are used to optimize yaw control of wind
turbines, six prediction models are developed using three types of mean wind directions. Finally, industrial data is
used to develop, validate and test the proposed models. From obtained results, it is shown that the hybrid models
outperform other ones in terms of three performance indexes and different types of wind direction time series.
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1. INTRODUCTION

As the rapidest developing renewable energy, wind
power generation has been impressive in recent years. The
latest statistical data from Global Wind Energy Council
[1] shows that, the global cumulative capacity of wind
power has reached 486.7[GW] in 2016, with a newly
added capacity of 54.6[GW] in 2016. In America of 2030,
it is anticipated that more than 20% energy production will
be provided by wind energy [2]. Meanwhile, Chinese gov-
ernment makes an energy plan [3] that non-fossil energy
will rise to 15% and 20% in the national total primary en-
ergy consumption by 2020 and 2030, respectively. From
these data, it is observed that wind energy has become an
important portion of energy. Wind turbines (WTs) are the
main equipment in charge of wind power capture and gen-
eration, thus it is important to optimize performance of
WTs.

To ensure high performance while minimizing costs,
optimal solutions have been developed constantly for
WTs. Among various solutions, control technology plays
an indispensable role that directly affects WTs’ power
production and their component loads [4]. For mod-
ern horizontal-axis WTs, there are three control actuators
[5, 6]: pitch actuator, torque actuator and yaw actuator.
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Among them, the former two actuators are considered as
the two dominating ones, since they can give a fast re-
sponse that answers the rapid variation of wind speed. Up
to date, there are large quantities of literature that focus
on control methods for the pitch actuator and torque actu-
ator. By comparison, the literature about the yaw system
control is limited. Nevertheless, the function of the yaw
system should not be overlooked.

Performance of yaw system may affect performance of
the WT. On one side, a yaw misalignment may lead to
a decreased power capture. Theoretically, the captured
power is deceased by the cube of the yaw error. Although
empirical data have shown that the relationship could be
cosine-squared instead of cosine-cubed [7,8], it is obvious
that the yaw misalignment results in the power reduction
of the WT. On the other side, a yaw misalignment may
bring about an increase of component loads. In a study of
Schepers [9], he conducted a comparison investigation be-
tween calculations and measurements on a small WT with
10[m] rotor diameter in yaw, which revealed that the yaw
misalignment had effects on blade root and shaft loads on
a sectional level.

Boorsma in [10] presented a data report of power pro-
duction and component loads for a 2.5[MW] WT in yawed
flow conditions, in which the edgewise fatigue equivalent
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loads were found to be increased along with the increas-
ing yaw error. From these data, it is obvious that the WT
performance is indeed significantly determined by the yaw
system. Therefore, the yaw control system should deserve
more attentions.

The yaw control methods are mainly relevant to the
measurement techniques [11]. In current industrial WTs,
a typical yaw controller is comparably simple and acti-
vated when the yaw error that is measured by wind vanes
mounted on the nacelle exceeds some thresholds. Al-
though the control logic is simple, a qualified controller
that can provide satisfactory performance is not easily im-
plemented. The difficulty consists in obtaining a proper
reference for adjusting the nacelle position. The yaw er-
ror measured by the wind vanes or sonic anemometers is
noticeably disturbed by the WT operation. Therefore, an
averaging filter is widely utilized to filter the measured
yaw error and then used to provide the yawing movement
reference. However, the filtered yaw error suffering from
time delay is not the real yaw error. Meanwhile, the wind
direction is changing all the same, thus the measured wind
direction is different from the future wind direction. Stud-
ies of operating WTs revealed that a static yaw error of
10 degree for wind speeds below 20[m/s] and 5 degree for
wind speeds above 20[m/s] [12]. Besides, statistical data
regarding the failure rate and downtime of WTs showed
that the portion of downtime caused by yaw system failure
comprised 13.3% of the total downtime, and the yaw sys-
tem failure rate comprised 12.5% [13, 14]. Consequently,
yaw control methods based on measured wind direction
provide general performance but needs to be optimized.

Recently, there has been growing interest in how the
yaw controls can be improved. Some solutions for im-
proving the yaw alignment using advanced measurement
devices have been addressed in the literature [15–17].
From results of these studies, increased energy produc-
tion due to the improved measurement system has been
observed. Nevertheless, the proposed solutions required
additional measurement devices that brought a high cost,
thus these solutions were only employed in researching
projects. For convenience of industrial applications, the
prediction technology may be an alternative method. In
the past years, there have been a large number of studies
that investigated different prediction approaches for wind
speed [18–20]. By comparison, studies about wind direc-
tion prediction are limited, among which wind direction
was predicted along with the wind speed. For example,
Yang et al predicted wind speed, wind direction and am-
bient temperature by using Bayesian approach [21]; Ergin
et al computed wind direction and wind speed based on
predicted values of lateral and longitudinal components
of wind speed [22]. Besides, Ouyang et al proposed a
time-series model for predicting wind direction [23] and
Sheibat-Othman et al estimated a yaw error by support
vector machines [24]. Although above studies addressed

the issue of wind direction prediction, these prediction
models were developed using data at 10 min or 1h inter-
vals. Besides, these data are instantaneous values rather
than mean values. Accordingly, the developed prediction
models may be unsuitable for yaw control of WTs.

Motivated by the aforementioned studies, in this paper,
we present a big gap between the need of wind energy in-
dustry and academic research in prediction methods. The
objective of this study aims at bridging this gap. To do so,
two prediction methods for the wind direction are devel-
oped and investigated. The first method adopts a classi-
cal time-series ARIMA (auto-regressive integrated mov-
ing average) prediction model, and the second one uses
a hybrid model that integrated the ARIMA model into a
Kalman filter (KF). Considering the practical need of the
yaw control method, three types of wind direction data av-
eraged in different periods are firstly derived to build the
statistical ARIMA models. After that, the ARIMA models
are integrated into the KF and formed ARIMA-KF hybrid
models. Finally, performance of the developed prediction
models are investigated and compared through some sim-
ulations.

The remainder of this work is organized as follows: the
wind direction measurement and a typical yaw control al-
gorithm are introduced in Section 2; and Section 3 de-
scribes the two wind direction prediction methods. This
is followed by prediction results discussions in Section 4.
Finally, conclusions are drawn in Section 5.

2. YAW CONTROL ALGORITHM AND WIND
DIRECTION MEASUREMENT

2.1. Yaw control algorithm

In this study, the yaw control algorithm for WTs man-
ufactured by China Ming Yang Wind Power (CMYWP)
is introduced. The control algorithm is illustrated in Fig.
1. The yaw error that is the difference between the wind
direction and the nacelle position of the WT, is measured
by the wind vane mounted on the rear of the nacelle. This
error is averaged by three averaged units with different av-
eraged period. When one of the averaged values is larger
than the predefined threshold and lasts more than the pre-
defined time threshold, the yaw system is activated and
moves to the yaw set-point. The yaw set-point not given
here is defined according to the output of averaged units.

From above discussions, it can be known that the pre-
sented yaw control algorithm depends entirely on the yaw
error. Since the measured yaw error is easily disturbed by
the WT’s operation and accuracy of the measurement de-
vice, averaged calculation units are used to provide more
reliable result. However, the averaged values only reflect
past yaw error and result in a control delay. Therefore, it
is reasonable to use prediction values to improve the per-
formance of the yaw control system.
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Fig. 1. Schematic of the yaw control algorithm for WTs
of CMYWP.

2.2. Wind direction measurement
For an industrial WT, there are two types of transducers

in yaw control system: one measures the nacelle position
(θnp) and the other measures the yaw error (θye).

Fig. 2 shows the principle of wind direction measure-
ments. From Fig. 2, it can be seen that wind direction
(θwd) can be calculated by

θwd = θnp +θye, (1)

where θye ∈ [0◦,360◦], θnp ∈ [−1080◦,1080◦].
As clearly seen from (1), yaw error is the difference be-

tween the wind direction and nacelle position. Since the
wind direction varies along with the time, the yaw control
system is developed to adjust the nacelle position to track
the direction. However, a fast movement of a yaw system
will induce high component loads. Accordingly, the yaw
speed for a large WT is normally designed in a range of
[0.2deg/s,0.8deg/s]. Meanwhile, to avoid over-usage of
yaw driver, the yaw system is always activated at discrete
intervals rather than continuous. As a consequence of the
control delay, the yaw error is hard to eliminate. Obtaining
wind direction prediction may be useful to provide a more
reasonable reference for the yaw control system. There-
fore, a decreased yaw error may be obtained and promote
performance of the WT.

In addition, it is worthy noticing that θwd calculated by
θye and θnp may be out of the range of [0◦,360◦]. There-
fore, θwdhas to be scaled by some manipulations, which is
not given here for sake of simplicity.

3. TWO PREDICTION METHODS

Prediction approaches discussed in the literature fall
into two categories: physical models and statistical mod-
els. Physical models use multiple parameters, such as ge-
ographic conditions, temperature and pressure, to build
multivariate forecasting models. It is good at obtain-
ing long-term prediction results and has been applied in
weather prediction. By comparison, statistical models em-
ploy mathematical equations to make prediction based on

Fig. 2. Schematic of wind direction measurement.

a number of historical data, among which the most notable
approaches are the ARIMA-based models introduced by
Box and Jenins [25]. Since the ARIMA-based models re-
produce the patterns of the prior movements of a variable
over time that are used to predict its future movements,
it is an effective way to construct a simplified model of
the time series that represents its randomness. Statisti-
cal methods often exhibit limited prediction accurateness,
thus the post-processing approaches have been proposed
to obtain better performance. In this study, we use two
prediction methods for the wind direction prediction: one
uses an ARIMA-based model, whereas the other one em-
ploys a hybrid ARIMA-KF model.

3.1. ARIMA-based prediction method
ARIMA models were popularized by Box and Jenins in

the early 1970s. There are many ARIMA models and the
typical one is known as non-seasonal model and can be
denoted as ARIMA(p,d,q), where:

AR: p =order of the auto-regression of the model;
I: d =order of differencing to make the model station-

ary;
MA: q =order of the moving average aspect of the

model.
Above notations can be expressed as follows:

yt =
p

∑
i=1

ϕiyt−i +
q

∑
j=1

φ jet− j + et , (2)

where yt represents the value of wind direction observed
or forecast at time t, ϕiis the i-th auto-regressive coeffi-
cient, φ jis the j-th moving-average coefficient, and et is the
error term at time period t.

Building an ARIMA model is basically a three-step it-
erative step that includes:

1) Model identification. This first step determines suit-
able values for parameters p, q and the order of differenc-
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ing, d. For this purpose, inspection of the run plots and
auto correlation function (ACF) plots can be used for de-
ciding d. P and d can be decided using ACF and the partial
auto correlation function (PACF) plots.

2) Parameter estimation. After specifying an initial
model, model parameters can be estimated from the max-
imum likelihood or conditional least squares methods.

3) Diagnostic checking. For the diagnostic checking
properties, ACF and PACF graphs of the residuals are an-
alyzed. If the model is good fit to the data, the residu-
als would correspond to white noise and have little auto-
correlation.

3.2. KF-based prediction method
KF is the statistically optimal sequential estimation pro-

cedure for dynamic systems [26]. Observations are recur-
sively combined with recent forecasts with weights that
minimize the corresponding biases. The main advantage
of this method is the easy adaption to any alteration of the
observation and the fact that it needs short series of back-
ground information. Due to its good performance, it has
been utilized in many application, such as in recent studies
of us [27–29], KF was used to estimate the effective wind
speed.

Based on the type of the target system, there are two
types of KF algorithms: the linear KF algorithm and the
nonlinear KF algorithm (or the extended KF algorithm).
Since the linear ARIMA model is used in this study, the
linear KF algorithm is applied here. The algorithm proce-
dure is given as follows:

1) System modeling. The first step is to describe the
system modeling equation in a standard form as

x(t +1) = Ax(t)+w(t +1), (3a)

y(t +1) =Cx(t +1)+ν(t +1), (3b)

where x(t + 1) and y(t + 1) represents the state and mea-
surement, respectively; w(t + 1) and ν(t + 1) represents
the state and measurement noises, respectively.

2) Measurement update. The measurement update is
fulfilled by

x(t +1) = x(t +1/t)+K(t +1)(y(t +1)

−Cx(t +1/t)), (4a)

K(t +1) = P(t +1/t)CT (CP(t +1/t)CT

+R(t +1))−1, (4b)

P(t +1) = (I −K(t +1)C)P(t +1/t), (4c)

where K(t + 1) and P(t + 1) represents the Kalman gain
and state estimation error covariance, respectively; R(t +
1) is the measurement noise covariance.

3) Time update filter gain. The time update is fulfilled
by

x(t +2/t +1) = Ax(t +1), (4d)

Fig. 3. Original wind direction and its averaged series.

P(t +2/t +1) = AP(t +1)AT +Q(t +1), (4e)

where Q(t +1) is the state noise covariance.

4. MODEL DEVELOPMENT AND PREDICTION
RESULTS

4.1. Wind direction data
The wind direction data in this paper was obtained

from an operating wind farm that locates in Guangdong
Province of China. Since the averaged wind direction
is used for the yaw control system, the data collected at
1 second intervals was used to calculate averaged values
with different periods. Three types of time series data are
included: mean values in 10-second, 30-second and 60-
second periods, respectively.

Fig. 3 shows a wind direction series in a half day (in-
cluding 43200 seconds) and its mean values averaged in
one minute period. The first 30000-second ones of those
data are used to establish models, the leaving 13200 ones
to check the model validity. As shown in Fig. 3, the
original wind direction data is mixed with high-frequency
noises, and the averaged values gave much smooth results.
Besides, it can be seen that this section of data is non-
stationary.

4.2. Model development
To illustrate the modeling development, the time series

of one-minute averaged wind direction was used to estab-
lish the model. Other two models are developed in a sim-
ilar way.

1) ARIMA-based prediction model
The ACF and PACF values for the first 30000-second

series are displayed in Fig. 4. From Fig. 4, we obtained
the data was non-stationary, since the PACF had a trailing
character meanwhile the ACF had a slow decreasing phe-
nomenon. Thus, the differencing approach was used. The
differencing results and their ACF/PACF values are given
in Fig. 5. From Fig. 5, we found out the wind direction
series after the first difference met a low-order AR model,
because the ACF decreased fast and the PACF showed a
cutoff value after lag 2 or probably lag 4.
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Fig. 4. ACF and PACF graphs for the original wind direc-
tion series.

Fig. 5. Differencing results and their ACF and PACF
graphs.

Fig. 6. BIC values for various ARIMA models.

Fig. 7. ACF and PACF graphs for the residuals.

According to the patterns on ACF and PACF graphs,
models with ARIMA(2,1,0) and ARIMA(4,1,0) are con-
sidered to be valid for this time series. To choose the best
model order, the Bayesian Information Criterion (BIC) is
used to specify the tentative orders for the auto-regressive
and moving average [30–32]. The combination yielding
the smallest BIC value is selected. Fig. 6 illustrates the
corresponding BIC values for the various ARIMA mod-
els with auto-regressive orders varying from 1 to 20. It
can be seen that the minimum BIC value is obtained with
ARIMA(2,1,0), which also supports the conclusion made
based on Fig. 5.

Then, ARIMA(2,1,0) model parameters are obtained
through the least-squares estimation algorithm. The es-
timation procedure minimizes the sum of square of the
residuals during a backward approach, where the values in
time series are reversed and parameters are obtained based
on the residuals of the fitted model. After that, ACF and
PACF graphs of the residuals are analyzed and shown in
Fig. 7, which reveal that there is no other pattern present
in the residual.
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Table 1. Model parameters for three time series.

Time
series

Models

1 yt =−0.2456yt−1 −0.2375yt−2 + et

2 yt =−0.1463yt−1 −0.1864yt−2 −0.2yt−3 + et

3 yt =−0.2795yt−1 −0.1562yt−2 −0.1yt−3

−0.0779yt−4 + et

Finally, the obtained model parameters are summarized
in Table 1, where three time series models are provided.
Time series 1, 2 and 3 represent 60-second, 30-second and
10-second averaged wind direction data.

2) ARIMA-KF hybrid prediction model
The key of utilizing KF method is to model the system

in a standard form as given in (3a) and (3b). In this paper,
the ARIMA model is used to provide the system modeling
for a KF-based model.

The explicit equation of the ARIMA(2,1,0) model in
Table 1 is reformulated as

xt =−0.2456xt−1 −0.2375xt−2 + et . (5)

Set:

xi(t) = xt−i, (i = 1,2, ...,20). (6)

Then, we have

x1(t +1) =−0.2456x1(t)−0.2375x2(t)+ et . (7)

Set:

x2(t +1) = x1(t). (8)

So, we obtain[
x1(t +1)
x2(t +1)

]
=

[
−0.2456 −0.2375

1 0

]
×
[

x1(t)
x2(t)

]
+

[
1
0

]
× e(t +1).

(9a)

The measurement equation can be expressed as

y(t +1) = [1 0]× [x1(t +1) x2(t +1)]T +ν(t +1).
(9b)

After establishing the standard form model, the KF
algorithm expressed in (4a)-(4e) is employed. Before
that, the initial state and prediction covariances are cho-
sen as x(0) = [1 0]T and P(0) = [1 0;0 1]T , respectively;
The process and measurement covariances are chosen as
Q = [10 0;0 10]T and R = 0.1, respectively.

Other two hybrid ARIMA-KF models for time series 2
and 3 are developed in a similar way and not given here
for sake of simplicity.

Fig. 8. Forecast data and real data in time series 1.

Fig. 9. Forecast data and real data in time series 2.

Fig. 10. Forecast data and real data in time series 3.

4.3. Prediction results
1) Time series results
In order to check performance of the two proposed pre-

diction methods for forecasting different time series data,
the prediction results by six prediction models are shown
in Figs. 8-10. Figs. 8-10 show forecasting results of time
series 1 with 60-second mean values, the ones of time se-
ries 2 with 30-second mean values and the ones time se-
ries 3 with 10-second mean values, respectively. From
these three figures, we can see that there are only slightly
difference among forecasting results and real results un-
der different time series. Therefore, we can conclude that
the developed prediction models by ARIMA and ARIMA-
KF methods provide good performance for the concerned
three time series.

Besides, the results forecast by ARIMA-KF models are
slightly closer to the real data than the ones by the ARIMA
models. To further verify this conclusion, statistical re-
sults are compared in the next subsection.
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Table 2. Statistical results of forecast data shown in
Figs. 8-10.

Indexes ARIMA-KF ARIMA
Series

1
Series

2
Series

3
Series

1
Series

2
Series

3
MAE 1.2432 0.9675 0.9384 1.333 1.0812 1.0754
MSE 2.7303 1.6812 1.7146 3.1981 2.055 2.1295
MAPE 12.44% 13.30% 16.83% 12.80% 13.48% 17.05%

2) Statistical results
To assess performance of the developed prediction

models, three types of performance indexes are used to
compare: mean absolute error (MAE), mean squared er-
ror (MSE) and mean absolute percentage error (MAPE).
MAE is the mean of absolute values of the forecast errors,
MSE is the mean of squared values of the forecast errors,
and MAPE is the mean of absolute values of the forecast
error percentages. Their calculations are expressed as

MAE =
1
N

N

∑
t=1

|yt − y′t |,

MSE =
1
N

N

∑
t=1

(yt − y′t)
2
,

MAPE =
1
N

N

∑
t=1

|(yt − y′t)/yt |×100%,

(10)

where yt and y′t are the real value and the forecast value at
time period t, and N is the number of the data points.

Using (10), the statistical results by the ARIMA and
ARIMA-KF prediction models are given in Table 2. From
Table 2, it is very clear that all MAE, MSE and MAPE
by ARIMA-KF models are smaller than those ones by
ARIMA models. By comparison to the results by the
ARIMA models, the ARIMA-KF models decreased the
MAE about 6.73%, 10.51% and 12.74%, the MSE about
14.62%, 18.19% and 19.48%, the MAPE about 2.81%,
1.33% and 1.29%, for time series 1, 2 and 3, respectively.
These statistical properties reveal that the hybrid ARIMA-
KF prediction method outperform the ARIMA method.

In Table 2, another trend for the statistical results is
pronounced, that is, when the averaged period is getting
shorter from 60 seconds to 10 seconds, the MAE values
are decreasing, and the MAPE values are increasing. This
trend well agrees the results in Figs. 8-10. The real data in
the 10-second mean time series shows a bigger variation
than the one in the 60-second mean time series.

5. CONCLUSIONS AND FUTURE WORK

In this paper, two time series-based prediction meth-
ods have been proposed for wind direction prediction, that
is, the ARIMA method and the hybrid ARIMA-KF one.
Since the prediction values aim at application in yaw con-
trol, the mean values of wind direction data are used to

establish the prediction models and three time series of
wind direction mean values are considered. To introduce
the model development, we discuss the ARIMA model
and its corresponding ARIMA-KF model with the time
series data of 60-second mean wind direction. Finally, we
have demonstrated some prediction results and statistical
results for the developed six prediction models by using
industrial data. The results have shown that the devel-
oped prediction models can provide good forecast results.
Meanwhile, better performance has been observed by the
ARIMA-KF models than the ARIMA models. Therefore,
it is shown that the hybrid model has a potential applica-
tion into optimal yaw control for WTs.

Regarding the fact that the current yaw control method
employed by industrial WTs entirely depends on the his-
torical wind direction data, the control performance could
be potentially improved by utilizing prediction informa-
tion into the control rules. Our future work will be toward
optimal yaw control method using the wind direction pre-
dictions.
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