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Abstract: The existing active power decoupling methods for single-phase current source rectifiers (SCSRs) usually involve
a lot of additional semiconductor devices or energy storage units, which is adverse to cost and efficiency. This study
proposes an active power decoupling method to buffer the double-frequency ripple power. The main circuit is
configured by adding only a decoupling capacitor and a diode to the traditional SCSR. Compared with the existing
ones, the added components are minimised. The operating principle and modulation scheme are described. A closed-
loop control method is developed to enhance twice the line frequency ripple power compensation performance. The
guide for the selection of the decoupling capacitance is also discussed. Simulations and experimental results are
presented to show the effectiveness of the method.

1 Introduction flowing into the dc-link capacitor. However, a common drawback
With the development of power electronic technology, more and more
applications involve single-phase power system. For example, in
distributed power generation the energy which comes from
photovoltaic (PV) panels, fuel cells or others is transferred to utility
grid by single phase grid-connected inverters [1, 2]. The residential
and industrial power supplies, electric vehicles with low power level
[3], and lighting system [4] are powered by single-phase power
system. However, the inherent ripple power at twice the line frequency
[5] in single phase power converters introduces some side effects,
which degrades system performance and decreases reliability [6–12].

To address the issue above, the solutions can be categorised into
passive method and active method. The passive method results
from the standpoints of hardware. It also includes two types:
increasing the dc-link capacitance or inductance [13] and making
use of the LC resonant filters [14–16]. They are easy to
implement, but large volume and weight are undesirable from the
perspectives of costs and power density.

The active method is based on the principle of buffering the ripple
power with small capacitors/inductors, which allow large voltage/
current fluctuation. It can be further divided into two categories.
One is implemented by swinging the dc-link bus voltage at twice
the line frequency to buffer the ripple power [17–22]. It is usually
carried out in two-stage single-phase inverters which consist of a
front-end dc–dc converter and a downstream dc–ac inverter. The
researches were mainly focused on maintaining the source current
free from second ripple current [17–19] and dealing with the
conflict between the dynamic response of dc-link voltage control
and ac current quality [20, 21]. A distinct advantage of this method
is that no extra circuit components are required. Its drawback
consists in the limited applications (not suitable for single-stage
power converters). In addition, since a second-order ripple voltage
is superimposed on the dc bus, the voltage stress increases
significantly, especially when the dc-link capacitance is small.

The other kind of active method is realised by adding an extra
decoupling circuit. Recently this method has been extensively
studied [23]. A variety of series and parallel compensation
decoupling circuits [7, 24–32] are proposed to balance the power
difference between the source and load. In the series compensation
decoupling circuits [24, 25], the compensation voltage is injected
to offset the pulsed voltage caused by the twice ripple power. In
the parallel compensation decoupling circuits [7, 26–32] the
compensation current is injected to prevent the pulsed current from
of the active methods is that an additional switching circuit is
required, which leads to higher cost and power losses. Therefore,
active methods sharing switches partially [33–40] and even
entirely [41–44] between the decoupling and original circuits are
proposed. The shared switches can be a bridge arm [33–36, 41,
42, 45, 46] or two upper/lower switches [37, 38]. However, the
penalties for reducing switches may be the reduced voltage utility
ratio, increased switches voltage stress and the increased
complexity in modulation and control [31, 45, 47].

The decoupling circuits for CSCs are investigated relatively less
compared with those tailored for VSCs. Most of them [25, 36, 38,
40] still require two additional active switches and two diodes even
if switch sharing is applied. The open-loop control in which the
decoupling capacitor voltage reference is taken as control objective
was usually adopted [25, 36, 40]. As a result, excellent decoupling
performance is difficult to achieve due to various unknown
disturbances, for example, parameter drifts and grid harmonics. In
[48] the proposed active method for SCSR needs no extra switches.
However, two identical decoupling capacitors are needed to buffer
the ripple power and the modulation scheme is also complicated.
Moreover, voltage stress of the semiconductor devices increases.

A decoupling solution for SCSR without requiring additional
active switches is proposed in this paper. The decoupling circuit
only needs a decoupling capacitor and a protection diode, which is
half the cost of that in [48]. Compared with the existing ones, the
proposed one has advantages in cost and size. Meanwhile, the
modulation algorithm is also easy to implement. To remove ripple
power in the dc-link inductor completely a closed-loop control
method is used. The rest of the paper is organised as follows:
Section 2 introduces the proposed circuit configuration and
switching states. Section 3 discusses the modulation scheme and
control strategy. The selection of the decoupling capacitance is
discussed in Section 4. Simulations and experimental results are
proved in Section 5. Finally, the conclusions are made in Section 6.
2 Circuit configuration and switching states

2.1 Circuit configuration

Fig. 1 shows the proposed power decoupling circuit. It is formed by
adding a decoupling capacitor Cd and a diode D5 into the
conventional SCSR. The second ripple power is diverted to Cd by
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Fig. 1 Proposed power decoupling circuit
controlling switches S2 and S4 properly. Then the dc-link current idc
can be kept constant even if a small inductor Ldc is used.
2.2 Switching states

In Fig. 1, S1 and S3 are complementary, whereas S2 and S4 do not
obey that constraint. Fig. 2 illustrates six switching states, which
are used in this paper. In the figures, T = (S1 S2 S3 S4) denotes the
states of the four active switches, where Si = ‘1’ (i = 1, 2, 3, 4)
indicates the corresponding switch is turned on and Si = ‘0’ turned
off. The switching states are divided into three groups in terms of
functions. The first group includes the switching states 1 and 2, in
which the ac side is connected to the dc-link current loop and the
decoupling capacitor Cd is bypassed. This group contributes to
Fig. 2 Switching states

a Switches S1 and S4 are turned on, and switches S2 and S3 are turned off.
b Switches S2 and S3 are turned on, and switches S1 and S4 are turned off.
c Switch S1 is turned on, and switches S2, S3, and S4 are turned off.
d Switches S2, S3, and S4 are turned on, and switch S1 is turned off.
e Switches S1 and S2 are turned on, and switches S3 and S4 are turned off.
f Switches S3 and S4 are turned on, and switches S1 and S2 are turned off.
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synthesising the input current (transferring active power). The
second group consists of switching states 3 and 4, in which the ac
side is bypassed and the decoupling capacitor Cd works. This
group is exclusively used to synthesise the decoupling capacitor
current (buffer the ripple power). The third group is composed of
switching states 5 and 6, which provide a freewheeling path for
the dc-link current idc. The effects of different switching states on
currents ii and id are summarised in Table 1. The expected currents
ii and id can be synthesised by using the six switching states.
3 Modulation scheme and control strategy

3.1 Modulation scheme

To analyse the power flow of the proposed SCSR, the grid ac voltage
ug and current ig are defined at first.

ug = Vcos(vt) (1)

ig = I cos (vt + w) (2)

where V and I are the amplitudes, ω is the angular frequency, and j is
the displacement angle. Then, the instantaneous power pac of the grid
is expressed as

pac = ugig =
VI cos w

( )
2︸����︷︷����︸
�P

+VI cos 2vt + w
( )
2︸���������︷︷���������︸
p̃

. (3)

In most applications, the load consumes constant power �P. Hence,
the ripple power P̃ should be buffered by the decoupling capacitor
Cd. By ignoring the power losses, the decoupling capacitor voltage
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Table 1 Switching states and currents

Switching states ii id

1 idc 0
2 −idc 0
3 0 idc
4 0 −idc
5,6 0 0
ud and current id can be expressed as [25]

ud =
																							
�u2d +

VI sin (2vt + w)

2vCd

√
(4)
id =
VI cos (2vt + w)/2																																	

�u2d + VI sin (2vt + w)/2vCd

( )√ (5)

where �ud is the dc component of ud.
Assume that dj ( j = 1, 2, 3, 4, 5, 6) is the duty ratio of the

switching state j, six duty ratios are subject to the following equation

∑6
j=1

dj = 1. (6)

Then, ii and id can be expressed as

ii
id

[ ]
= d1 − d2

d3 − d4

[ ]
· idc. (7)
Fig. 3 Switching patterns

a Charging Cd when ac current is positive
b Discharging Cd when ac current is positive
c Charging Cd when ac current is negative
d Discharging Cd when ac current is negative
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Substitute (3), (5), and (6) into (7), dj can be expressed as

d1 = ii ref/idc ii ref . 0
0 ii ref ≤ 0

{
d2 = 0 ii ref . 0

−ii ref/idc ii ref ≤ 0

{

d3 = id ref/idc id ref . 0
0 id ref ≤ 0

{
d4 = 0 id ref . 0

−id ref/idc id ref ≤ 0

{

d5 =
1−∑4

j=1
dj id ref . 0

0 id ref ≤ 0

⎧⎨
⎩ d6 =

0 id ref . 0

1−∑4
j=1

dj id ref ≤ 0

⎧⎪⎨
⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where ii_ref and id_ref are the references of the grid current and
decoupling capacitor current, respectively. To reduce the dc-link
current ripple, in each switching period Ts, the decoupling
operation is first carried out when charging Cd; while the power
transmission is prior when discharging Cd. To balance heat
dissipation of each bridge, switching state 5/6 is carried out when
charging/discharging Cd. Fig. 3 shows the switching patterns.
From (8) and Fig. 3, it is easy for the modulation to be
implemented in FPGA (CPLD).

3.2 Control strategy

According to Fig. 1, the equivalent averaged circuit model of the
proposed converter is illustrated in Fig. 4. The averaged voltages
ur and uc are provided by filter capacitor voltage and decoupling
capacitor voltage, respectively. Then the differential equations of
the converter are obtained as follows

Li
dig
dt

= ug − uc (9)

Ci
duc
dt

= ig − ii (10)

Ldc
didc
dt

= ur − us − Ridc (11)

Cd
dud
dt

= id (12)

ii = (d1 − d2)idc (13)

id = (d3 − d4)idc (14)

ur =
ii
idc

uc = (d1 − d2)uc (15)

us =
id
idc

ud = (d3 − d4)ud (16)

where ig, idc, ud are output variables; ii and id are control input
variables.

The precise open-loop reference (the decoupling capacitor voltage
ud or current id) for power decoupling is difficult to obtain due to
Fig. 4 Equivalent averaged circuit
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power losses and parameter perturbations. To achieve good
decoupling performance a closed-control strategy in [48] is
adopted. Its basic idea is that id is responsive for regulating dc-link
current idc and ii is in charge of PFC as well as maintaining the dc
component of the ud at a given level.

3.2.1 Ripple power control: Actually, if the ripple power is not
completely absorbed by the decoupling capacitor Cd, the residual
part will be imposed on the dc-link inductor Ldc. Then the
voltage-second balance will be broken and the dc-link current
cannot be kept constant. Therefore, the error between the dc-link
current reference and its detected value can be used to reflect the
decoupling effect indirectly. As shown in Fig. 5, the error is sent
to a proportional-integral (PI) controller. Then the reference id_ref
can be obtained as follows

id ref = id +
idc
ud

Gi(s)(idc ref − idc) (17)

where id serves as a forward compensation in the control to improve
the dynamic response.

3.2.2 Decoupling capacitor voltage control: The decoupling
capacitor voltage fluctuates as a result of buffering the ripple power.
Though the required average ripple power through Cd over a line
frequency cycle is zero, the power losses due to switches and
capacitors are unavoidable. Therefore, the dc component of the
decoupling capacitor voltage should be maintained at a
predetermined level. Before introducing the voltage control of Cd,
assume the dc-link current subsystem is in steady state.

According to (11) and (15), us in steady state can be expressed as

us =
ii
idc

uc − Ridc. (18)

Substitute (15) and (18) to (12), the voltage dynamic of Cd is express
as follows.

Cd

2

dx

dt
= ucii − Ri2dc (19)

where x = u2d. Clearly, the voltage across Cd can be controlled by
control input ii. By ignoring the effects of the input filters, ii≃ ig
and uc≃ ug, then (19) can be rewritten as

Cd

2

dx

dt
= VI

2
cos (w)+ cos (2vt + w)
[ ]− Ri2dc. (20)

Since (20) is a periodic system, the periodic averaging method [49] is
used to design the controller. Then the average differential equation
of (20) is

Cd
d�x

dt
= VI cos (w)− 2Ri2dc (21)
Fig. 5 Block diagram of the control scheme
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where �x = �u2d = 1/T
( ) �t

t−T x(t)dt, and �x is obtained by a moving
average filter in implementation. Equation (21) is a simple
first-order system, thus Gv(s) is achieved by a PI controller. Then
the reference ii_ref can be written as

ii ref = I ref cos vt + w
( )

= I + Gv(s)(�u
2
d ref − �u2d)

{ }
cos vt + w
( ) (22)

where I = 2�P/V is the feed-forward term to increase the dynamic
response of the current control.

Fig. 5 shows the overall block diagram of the control scheme. It
mainly includes a phase locking loop, a voltage controller and a
current controller. Compared with the control scheme in [25], the
complexity does not increase a lot. A highlight merit of the
proposed control is the feed-back regulation of the dc-link current,
which enhances the decoupling effects.
4 Design of the decoupling circuit

In this section, the values of �ud and Cd will be determined. There are
two basic constraints imposed by the normal operation of the
converter. One is that the decoupling capacitor voltage should be
higher than the grid voltage. Then, the misgating-on of D2 can be
avoided when carrying out switching states 1 and 4. The other
is that the synthesis of input current and decoupling current should
be accomplished in each switching period, that is,

∑4
j=1 dj

should be no more than unity. Hence, inequalities (23) and (24)
should hold for any time

																							
�u2d +

VI sin (2vt + w)

2vCd

√
≥ Vcos(vt)
∣∣ ∣∣ (23)

m( cos (vt + w)
∣∣ ∣∣+ V cos (2vt + w)/2																																	

�u2d + VI sin (2vt + w)/2vCd

( )√
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣) ≤ 1 (24)

where m = I/idc is the modulation index.
Assume that the converter works in unity power factor, the

maximum grid current is Im, and the required maximum
modulation index is M.

On the basis of the assumptions above, (23) can be simplified as

�ud ≥

																														
1

2
V 2 +

																
V 4 + VIm

vCd

( )2
√⎛

⎝
⎞
⎠

√√√√√ (25)

Equation (24) can also be simplified as

M ≤ 1

1+ V/2
																				
�u2d − VIm/2vCd

( )√( ) (26)
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Fig. 6 Decoupling capacitor voltage as a function of the decoupling
capacitance and modulation index

Table 2 Parameters used in analysis, simulation, and experiment

Parameters Symbols Values

input phase voltage V 110√2V
source angular frequency ω 314 rad/s
input filters Li/Ci 0.6 mH/20 µF
Dc filter inductor Ldc 5 mH
active buffer capacitor Cd 90 μF
load resistance R 8.7 Ω
load power �P 217.5 W
switching frequency fs 20 kHz
Besides the constraints imposed by its normal operation, the
maximum voltage stress on switches should be considered.
Therefore,

max(ud) ≤ up (27)

where up denotes the maximum permissible voltage, (27) can be
Fig. 7 Simulation results

Fig. 8 Steady-state experimental waveforms

a With decoupling function
b Without decoupling function
c Spectral analysis for dc-link current
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rewritten as

												
�u2d +

VIm
2vCd

√
≤ up (28)

On the basis of inequalities (25), (26) and (28), a feasible region for
�ud and Cd can be solved. Using the parameters in simulation and
experiments, the relation between �ud, Cd, and M is shown in
Fig. 6. As can be seen, when M is small, �ud is not affected by M.
Because (25) is the dominant constraint. However, when M is
large, (26) becomes the dominant constraint. Therefore, �ud
increases significantly with increasing M. On the other hand,
increasing capacitance obviously can decrease �ud. However, once
Cd is beyond a certain value, increasing capacitance cannot
1723



Fig. 9 Experimental waveforms of voltages across (D4 + S4) and D2
decrease �ud significantly. In this study, by making a trade-off
between voltage stress and cost the decoupling capacitance is 90
µF and �ud is set to 200 V.
Fig. 11 Power losses analysis
5 Simulations and experimental results

Simulation study is carried out in Matlab/Simulink environment and
the circuit parameters are listed in Table 2. The waveforms in
steady-state and transient operation are presented in Fig. 7. At
Fig. 10 Dynamic experimental waveforms

a 100% to 40% step-down load change
b 40% to 100% step-up load change

a Efficiency comparison
b Loss distribution of the proposed converter with 100% load operation
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beginning system operates in steady-state with a 5.4 A dc-link
current. The step-down change of dc-link reference from 5.4 to
3.4 A and step-up change from 3.4 to 5.4 A happen at t = 0.36 and
0.5 s. As can be seen, the dc-link current idc is always smooth in
both operation states because the ripple power is diverted to the
decoupling capacitor Cd. Meanwhile, the low dc-link current ripple
verifies the effectiveness of the designed switching patterns. The
source current ig is always sine shaped and in phase with the
source voltage ug.

A prototype was built to verify the feasibility of the decoupling
topology and control schemes. The control algorithm of the
converter is realised by a combination of digital signal processor
TMS320F28335 and field programmable gate array FPGA
EP2C8T144C8N. The decoupling capacitor is formed by
connecting three 30 µF/490 V film capacitors in parallel. Fig. 8a
shows the steady-state experimental waveforms. As can be seen,
the experimental results are in good agreement with the simulation
results. The THD of source current ig is 4.63%, which meets the
requirements of standard IEC/EN 61000-3-2 Class A. After
disabling the decoupling function the twice ripple power will be
imposed on the dc-link inductor immediately and the related
experimental waveforms are shown in Fig. 8b. Clearly, the dc-link
current fluctuates with twice the line frequency. The grid ac
current is seriously distorted at the valley of the dc-link current.
Fig. 8c shows the spectrum of the dc-link current with and without
decoupling. It is clear that there is a dramatic reduction of the
second harmonic current when activating decoupling function.
Other low-frequency harmonic components are also reduced.

Fig. 9 shows the waveforms of voltages across (D4 + S4) and D2.
As seen, the envelope of the voltage across (D4 + S4) is (ug + ud),
which is always positive. Therefore, the reverse voltage across D4

is negative during the turn-off process, which reduces the turn-off
loss. The envelope of the voltage across D2 is (-ug-ud), which is
always negative. Then D2 can be blocked reliably when S4 is in
the on state. On the other hand, the voltage stress of S4 and D2 are
the highest in all the semiconductor devices.

Fig. 10 shows the dynamic response of the system when the load
power is subject to a 100% to 40% step-down change and a 40% to
IET Power Electron., 2016, Vol. 9, Iss. 8, pp. 1719–1726
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100% step-up change. As can be seen, in Fig. 10a the dc-link current
idc decreases from 5.4 to 3.4 A quickly due to the closed-loop control
method. The excess energy in the dc-link inductor is transferred to
the decoupling capacitor and the capacitor voltage level is raised.
The decoupling capacitor voltage enters steady state relatively
slow as results of low bandwidth of the voltage control loop. With
the decrease of the load power, the ripple power is reduced and
the fluctuation range of ud decreases accordingly. Fig. 10b
shows the opposite transient process. The experimental results also
coincide with those in the simulation.

Fig. 11a illustrates the efficiency curves of the proposed converter
and the conventional SCSR. As can be seen, the efficiency of the
proposed converter is slightly lower than that of the conventional
case. The main reason is the increased voltage stresses, which
increases the switching power losses. As well known, all the active
decoupling methods cause extra power losses. As reported in [6, 44],
usually the efficiency penalty is more than two percentage points.
However, in the proposed method the system efficiency drop under
rated load power is 1.5%, which is lower than those reported in [25,
48]. Fig. 11b shows the estimated power loss distribution. Apparently,
the switching losses of the semiconductor devices in the lower bridge
arm are significant. As analysed previously, switching loss does not
happen to D4 because the reverse voltage across D4 is negative.
6 Conclusion

An active ripple power decoupling method is proposed for SCSR to
reduce the twice ripple power and the dc-link inductance. A
highlight merit of the method is that the required extra components
are minimised, which reduces cost and improves reliability. The
operating principle has been analysed and a closed-loop control
method is used to enhance the ripple power decoupling effects.
Simulations and experimental results in both steady-state and
transient operations are obtained. The results show that the
proposed decoupling method reduces the second harmonic current
by 91.4%, which reduces required dc-link inductance greatly. One
shortcoming of the method is the increased switching voltage
stress, which decreases the system efficiency inevitably. Thus, the
efficiency optimisation will be studied in the future work.
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